SYNTHESIS AND PURIFICATION OF WASTE COOKING OIL INTO BIOFUEL USING BIOMASS ACTIVATED CARBON TOWARDS A SUSTAINABLE ENVIRONMENT

Chloe Wong Kai Lin, Teoh Yoong Ler Supervisor: Komathy Veerasinghan SMJK Ave Maria Convent, 30250 Ipoh, Perak. E-mail address: komathy2112@gmail.com

INTRODUCTION

RESULTS AND DISCUSSIONS

FTIR Analysis

EFFECT OF DIFFERENT OPERATING CONDITION ON BIOFUEL YIELD

Effect of methanol-to-oil ratio on conversion of waste cooking oil into biofuel using NaOH 93.95 91.25 87.93 90 72.35 70

OBJECTIVE

To develop biomass	 sugarcane bagasse, coconut husk and banana peel is
activated carbon (BAC)	tested as a heterogeneous catalyst in the
derived from agricultural	transesterification of waste cooking oil (WCO) with
waste namely:	methanol to produce biofuel.
To investigate the potential of newly developed	 BAC in production of biofuel.

To study the characterization of biofuel produced

Climate

change

Meets the Malaysian Standard (MS2008)

METHODOLOGY

BIOFUEL CHARACTERIZATION STUDY

Property		y MS 2008: 2008 (Malaysian Standard)	n	Norma Palm Biodies	l el	Biofuel derived from WCO using NaOH/ BAC		
	Density at 15 ° (g/cm3)	C 0.86-9.0		0.878	3	0.8699		
-	Viscocit at 40 ° (mm2/s)	y 3.5-5.0 C	3.5-5.0 120 -18-0			4.4		
	Flash point °C	120				105		
	Cloud point °C	-18-0				10.6		
	Pour point °C	-21-0	-21-0			15.2		
				HEAT	r OF	COMBUS	TI	ON
Type of M		Mass used to	ass M ed to m		He	Heat of combustion		
in 60		increase 60°C(g)	(9	g/mol)	(KJ/mol)		-	
Biofuel		1.51		293 48		4846.15		
Diesel		1.20		250	ļ	5250.00		

The set

REFFERENCES

Alha, N.S.; Sulaiman, S. Overview of catalysts in biodiesel production. Arpn J. Eng. Appl. Sci. 2016, 11, 439–442.

Asri, W. & Budiman, A. Synthesis of biodiesel from second-used cooking oil. Phys. Procedia32, 190–199 (2013)

Colombo, K. & Ender, L. The study of biodiesel production using CaO as a heterogeneous catalytic reaction. Ehyptian J. Pet.26, 341–349 (2017)

Mannu, A.; Ferro, M.; Colombo Dugoni, G.; Panzeri, W.; Petretto, G.L.; Urgeghe, P.; Mele, A. Improving therecycling technology of waste cooking oils: Chemical fingerprint as tool for non-biodiesel application. Waste Manag. 2019, 96, 1-8

Ong H.C, Mahlia T.M.I, Masjuki H.H. A review on energy scenario and sustainable energy in Malaysia. Renewable and Sustainable Energy Reviews 2011; 15:639-647.